Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model
نویسندگان
چکیده
The treatment of brain disorders is one of the greatest challenges in drug delivery because of a variety of main barriers in effective drug transport and maintaining therapeutic concentrations in the brain for a prolonged period. The objective of this study was delivery of valproic acid (VPA) to the brain by intranasal route. For this purpose, nanostructured lipid carriers (NLCs) were prepared by solvent diffusion method followed by ultrasonication and characterized for size, zeta potential, drug-loading percentage, and release. Six groups of rats each containing six animals received drug-loaded NLCs intraperitoneally (IP) or intranasally. Brain responses were then examined by using maximal electroshock (MES). The hind limb tonic extension:flexion inhibition ratio was measured at 15-, 30-, 60-, 90-, and 120-minute intervals. The drug concentration was also measured in plasma and brain at the most protective point using gas chromatography method. The particle size of NLCs was 154 ± 16 nm with drug-loading percentage of 47% ± 0.8% and drug release of 75% ± 1.9% after 21 days. In vivo results showed that there was a significant difference between protective effects of NLCs of VPA and control group 15, 30, 60, and 90 minutes after treatment via intranasal route (P < 0.05). Similar protective effect was observed in rats treated with NLCs of VPA in intranasal route and positive control in IP route (P > 0.05). Results of drug determination in brain and plasma showed that brain:plasma concentration ratio was much higher after intranasal administration of NLCs of VPA than the positive control group (IP route). In conclusion, intranasal administration of NLCs of VPA provided a better protection against MES seizure.
منابع مشابه
Moisturizing effects of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using deionized and magnetized water by in vivo and in vitro methods
Objective(s): The present study aimed to determine and compare moisturizing and occlusion effects of different solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) using magnetized water and deionized water.Materials and Methods: SLN formulations were prepared using various lipids, including Tripalmitin, Compritol®, Pr...
متن کاملExtracellular Vesicles as Neprilysin Delivery Syemory Improvement of Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative brain disorder which has no effective treatment yet due to the blood barrier in the brain that limits the drugs with the potential of disease improvement. Extracellular vesicles (EVs) are biocompatible nanoparticles with a lipid membrane. These vesicles are secreted from various cells such as mesenchymal stem cells (MSCs) and can pass through biol...
متن کاملExtracellular Vesicles as Neprilysin Delivery Syemory Improvement of Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative brain disorder which has no effective treatment yet due to the blood barrier in the brain that limits the drugs with the potential of disease improvement. Extracellular vesicles (EVs) are biocompatible nanoparticles with a lipid membrane. These vesicles are secreted from various cells such as mesenchymal stem cells (MSCs) and can pass through biol...
متن کاملValproic Acid-Induced Time Dependent Craniofacial Defects in Wistar Rat Fetuse
Purpose: we previously reported that maternal valproic acid (VA) administration during rat pregnancy produced CNS defect ranely, syringomyelia. Furthermore, it seems that administration of valproic acid during critical period of pregnancy may affect on development of other embryonic skeletal portion such as craniofacial region. The goal of our study was to determine whether there is a relations...
متن کاملP107: Using Nano Particles as a Novel Application for Alzheimer’s Disease; an Effective Endeavor for Drug Delivery
As the most common cause of dementia among the elderly results in cognitive and ‎behavioral impairment, Alzheimer’s disease (AD) is characterized with aggregation of senile ‎plaques (Beta-amyloid protein), cortical atrophy and ventricular enlargement. Unfortunately, ‎conventional methods like acetyl cholinesterase inhibitor drugs, are not so effective owing to ‎restrictive...
متن کامل